Ground State Electron Configurations

• The actual wavefunction of a multi-electron atom is very complicated.

• In the orbital approximation, we suppose that a reasonable first approximation to this exact wavefunction is obtained by thinking of each electron as occupying its “own” orbital.

• The orbital approximation allows us to express the electronic structure of an atom by reporting its configuration, the list of occupied orbitals.

GROUND STATE CONFIGURATION for first 6 elements.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1s(^1)</td>
<td>1s(^2)</td>
<td>1s(^2)2s(^1)</td>
<td>1s(^2)2s(^2)</td>
<td>1s(^2)2s(^2)2p(^1)</td>
<td>1s(^2)2s(^2)2p(^2)</td>
</tr>
</tbody>
</table>

We have a problem…
…there are three 2p orbitals…where do we put the electrons?
How can we fill 2 electrons into the three p orbitals, obeying the **Pauli principle**?

There are several possible ways of filling 2 electrons into three degenerate p orbitals.

The resulting microstates are NOT necessarily degenerate!

Identify the **ground state** using **Hund’s rule** (*maximum multiplicity*)…

…*maximum* # of parallel spins results in lowest e⁻ - e⁻ repulsion.

The above diagram roughly depicts the relative energy difference between these three ways of filling 2 electrons into the three p orbitals.

Ground State: \(1s^22s^22p_x^12p_y^1 \) (or \(1s^22s^22p_x^12p_z^1 \) or \(1s^22s^22p_y^12p_z^1 \))

[CAUTION: these don’t explicitly state the electron’s spin!]
The 4th Quantum Number

In order to discuss atomic orbital energies, we use 3 quantum numbers:

- **Principal** \(n \) (majority contribution to energy)
- **Angular momentum** \(l \) (orbital shape)
- **Magnetic** \(m_l \) (orbital orientation)

These 3 quantum numbers are the \textbf{spatial} quantum numbers.

⇒ together, they describe the 3D appearance of the orbital in space
⇒ the spatial probability distribution of an e- described by that orbital

The 4th quantum number is necessary to fully describe an e- in an orbital.

\[\text{Spin} \quad m_s \quad \text{(orientation of electron “spin”) MEANING?} \]

\[m_s = + \frac{1}{2}, - \frac{1}{2} \]

An electron is either “spin up” or “spin down”.

The explanation of \textbf{Hund’s rule} is complicated, but it reflects the quantum mechanical property of \textbf{spin correlation}, that electrons with parallel spins have a tendency to stay well apart and hence repel each other less.
electron-electron repulsions and the Aufbau principle

We have already seen that e-e repulsions affect:

1) Ionization Potentials (See Li)
2) Electron Affinities (See Cl & F)
3) Ground State Configurations (e.g., C)

Let’s look again at the ordering of atomic orbitals, paying particular attention to the 3d and 4s in transition metals.
The Electronic Configurations of the Elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>Total Electrons</th>
<th>Orbital Diagram</th>
<th>Electron Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>$1s^1$</td>
<td>$1s^1$</td>
</tr>
<tr>
<td>He</td>
<td>2</td>
<td>$1s^2$</td>
<td>$1s^2$</td>
</tr>
<tr>
<td>Li</td>
<td>3</td>
<td>$1s^2 2s^1$</td>
<td>$1s^2 2s^1$</td>
</tr>
<tr>
<td>Be</td>
<td>4</td>
<td>$1s^2 2s^2$</td>
<td>$1s^2 2s^2$</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>$1s^2 2s^2 2p^1$</td>
<td>$1s^2 2s^2 2p^1$</td>
</tr>
</tbody>
</table>

HOMEWORK FOR TUTORIAL: Fill in electrons for C, N, O, F, Ne, Na & Mg
Electronic Configuration

<table>
<thead>
<tr>
<th>Z</th>
<th>neutral</th>
<th>+ve ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1s^1</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>1s^2</td>
</tr>
<tr>
<td>3</td>
<td>Li ([He] 2s^1)</td>
<td>1s^2</td>
</tr>
<tr>
<td>4</td>
<td>Be ([He] 2s^2)</td>
<td>[He] 2s^1</td>
</tr>
<tr>
<td>5</td>
<td>B ([He] 2s^2 2p^1)</td>
<td>[He] 2s^2</td>
</tr>
<tr>
<td>6</td>
<td>C ([He] 2s^2 2p^2)</td>
<td>[He] 2s^2 2p^1</td>
</tr>
<tr>
<td>7</td>
<td>N ([He] 2s^2 2p^3)</td>
<td>[He] 2s^2 2p^2</td>
</tr>
<tr>
<td>8</td>
<td>O ([He] 2s^2 2p^4)</td>
<td>[He] 2s^2 2p^3</td>
</tr>
<tr>
<td>9</td>
<td>F ([He] 2s^2 2p^5)</td>
<td>[He] 2s^2 2p^4</td>
</tr>
<tr>
<td>10</td>
<td>Ne ([He] 2s^2 2p^6)</td>
<td>[He] 2s^2 2p^5</td>
</tr>
<tr>
<td>11</td>
<td>Na ([Ne] 3s^1)</td>
<td>[Ne]</td>
</tr>
<tr>
<td>12</td>
<td>Mg ([Ne] 3s^2)</td>
<td>[Ne] 3s^1</td>
</tr>
<tr>
<td>13</td>
<td>Al ([Ne] 3s^2 3p^1)</td>
<td>[Ne] 3s^2</td>
</tr>
<tr>
<td>14</td>
<td>Si ([Ne] 3s^2 3p^2)</td>
<td>[Ne] 3s^2 3p^1</td>
</tr>
<tr>
<td>15</td>
<td>P ([Ne] 3s^2 3p^3)</td>
<td>[Ne] 3s^2 3p^2</td>
</tr>
<tr>
<td>16</td>
<td>S ([Ne] 3s^2 3p^4)</td>
<td>[Ne] 3s^2 3p^3</td>
</tr>
<tr>
<td>17</td>
<td>Cl ([Ne] 3s^2 3p^5)</td>
<td>[Ne] 3s^2 3p^4</td>
</tr>
<tr>
<td>18</td>
<td>Ar ([Ne] 3s^2 3p^6)</td>
<td>[Ne] 3s^2 3p^5</td>
</tr>
<tr>
<td>19</td>
<td>K ([Ar] 4s^1)</td>
<td>[Ar]</td>
</tr>
<tr>
<td>20</td>
<td>Ca ([Ar] 4s^2)</td>
<td>[Ar] 4s^1</td>
</tr>
<tr>
<td>21</td>
<td>Sc ([Ar] 3d^1 4s^2)</td>
<td>[Ar] 3d^1 4s^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partial filling of both 3d and 4s in Sc^+</td>
</tr>
<tr>
<td>22</td>
<td>Ti ([Ar] 3d^2 4s^2)</td>
<td>[Ar] 3d^2 4s^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partial filling of both 3d and 4s in Ti^+</td>
</tr>
<tr>
<td>23</td>
<td>V ([Ar] 3d^3 4s^2)</td>
<td>[Ar] 3d^4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4s is empty for V^+</td>
</tr>
</tbody>
</table>
24 Cr [Ar] 3d5 4s1
25 Mn [Ar] 3d5 4s2
26 Fe [Ar] 3d6 4s2
27 Co [Ar] 3d7 4s2
28 Ni [Ar] 3d8 4s2
29 Cu [Ar] 3d10 4s1
30 Zn [Ar] 3d10 4s2
31 Ga [Ar] 3d10 4s2 4p1
32 Ge [Ar] 3d10 4s2 4p2
33 As [Ar] 3d10 4s2 4p3
34 Se [Ar] 3d10 4s2 4p4
35 Br [Ar] 3d10 4s2 4p5
36 Kr [Ar] 3d10 4s2 4p6
37 Rb [Kr] 5s1
38 Sr [Kr] 5s2
39 Y [Kr] 4d1 5s2
40 Zr [Kr] 4d2 5s2
41 Nb [Kr] 4d4 5s1
42 Mo [Kr] 4d5 5s1
43 Tc [Kr] 4d5 5s2
44 Ru [Kr] 4d7 5s1
45 Rh [Kr] 4d8 5s1
46 Pd [Kr] 4d10
47 Ag [Kr] 4d10 5s1
48 Cd [Kr] 4d10 5s2

CHEM 2060 Lecture 9: Electronic Configurations

24 Cr [Ar] 3d5 4s1 only 1e$^-$ in 4s for Cr…4s empty for Cr$^+$
25 Mn [Ar] 3d5 4s1 partial filling of both 3d and 4s in Mn$^+$
26 Fe [Ar] 3d6 4s1 partial filling of both 3d and 4s in Fe$^+$
27 Co [Ar] 3d8 4s1 4s is empty for Co$^+$
28 Ni [Ar] 3d9 4s1 4s is empty for Ni$^+$
29 Cu [Ar] 3d10 4s1 1e$^-$ in 4s for Cu…4s empty for Cu$^+$
30 Zn [Ar] 3d10 4s2 partial filling of both 3d and 4s in Zn$^+$
31 Ga [Ar] 3d10 4s2 4p1 4d is empty for Y$^+$…different from Sc$^+$
32 Ge [Ar] 3d10 4s2 4p2 partial filling of both 4d and 5s in Zr$^+$
33 As [Ar] 3d10 4s2 4p3 only 1e$^-$ in 5s for Nb.. 5s empty in Nb$^+$
34 Se [Ar] 3d10 4s2 4p4 only 1e$^-$ in 5s for Mo.. 5s empty Mo$^+$
35 Br [Ar] 3d10 4s2 4p5 partial filling of both 4d and 5s in Tc$^+$
36 Kr [Ar] 3d10 4s2 4p6 5s empty in both Pd and Pd$^+$
37 Rb [Kr] 5s1 1e$^-$ in 5s for Ag…5s empty for Ag$^+$
38 Sr [Kr] 5s2
There are several exceptions (of different types) to the Aufbau principle.

The oversimplified filling rules that we learned in first year chemistry work up to $Z = 20$ (calcium), but are no longer accurate for heavier elements where the energy difference between n and $n+1$ is smaller.

3d and 4s orbitals (K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn)

In atoms (charge = 0), **4s fills first**...we say that “4s is lower than 3d”

EXCEPTIONS occur for Cr and Cu.

- Chromium $[\text{Ar}]3d^5\ 4s^1$ half-filled 3d orbital shell
- Copper $[\text{Ar}]3d^{10}\ 4s^1$ filled 3d orbital shell

WHY?

Because we are being “naïve” by simply referring to the energy of orbitals! By saying “4s is lower than 3d”, we are neglecting the impact of e-e repulsion!
The ground state electronic configurations of the 0, +1, and +2 oxidation states of the element scandium (Sc) provide a really good example for this argument.

\[
\begin{align*}
\text{Sc} & \rightarrow \text{[Ar] 3d}^1 \text{4s}^2 \\
\text{Sc}^+ & \rightarrow \text{[Ar] 3d}^1 \text{4s}^1 \\
\text{Sc}^{2+} & \rightarrow \text{[Ar] 3d}^1
\end{align*}
\]

⇒ The 3d and 4s orbitals are close in energy...
 ...the energy difference is small enough that the effect of \(e^-e^-\) repulsion dictates the ground state configurations.

There are a number of experimental values that can help probe this issue:

Experimental energy required to **excite one electron** from 4s to 3d in Sc:

\[
\text{Sc ([Ar]3d}^1\text{4s}^2) \rightarrow \text{Sc ([Ar]3d}^2\text{4s}^1) \quad \Delta E = 2.03 \text{ eV}
\]

Experimental **ionization potentials** from 3d versus from 4s in Sc:

\[
\begin{align*}
\text{Sc ([Ar]3d}^1\text{4s}^2) & \rightarrow \text{Sc}^+ ([\text{Ar}3d]4s^1) + e^- \quad IP_{4s} = 6.62 \text{ eV} \\
\text{Sc ([Ar]3d}^1\text{4s}^2) & \rightarrow \text{Sc}^+ ([\text{Ar}4s]^2) + e^- \quad IP_{3d} = 7.98 \text{ eV}
\end{align*}
\]
We are now left with a dilemma…

If it is easier to remove an electron from the 4s orbital than from the 3d orbital, shouldn’t that mean that the 3d orbital is lower in energy than the 4s?

Why, then, is the 4s orbital filled before the 3d orbital?

ANSWER: It is more accurate to consider the relative energies of electronic configurations than of atomic orbitals.

In other words, the energies of the electronic configurations ultimately dictate the *apparent* ordering of the atomic orbital energies.

The 4s orbital is more diffuse than the 3d orbital.

But the 4s orbital also penetrates to the nucleus better than the 3d orbital.
For most of the 1st row transition metal elements, the ground state is:
\[
[\text{Ar}]3d^x4s^2 \quad (4s \text{ fills first})
\]
…because e-e repulsion is decreased by filling the diffuse 4s orbital first.

Note exceptions often occur with:
Exactly ½-filled and full shells
- Chromium $3d^54s^1$
- Copper $3d^{10}4s^1$

These exceptions reflect a quantum mechanical stabilization of exactly ½-filled or full (sub)shells.
For ALL of the 1st row transition metal dications (or higher oxidation states), the ground state is:

\[\text{[Ar]}3d^x \text{ (4s is empty)} \]

When we start removing electrons from the system, we increase the overall nuclear charge “felt” by all the remaining electrons…

…we’ve decreased the shielding!

As a result, the atomic orbitals contract (become less diffuse).

The reduction in the “diffuse-ness” of the 4s orbital results in an increase in e-e repulsion between electrons occupying this orbital.

For \(M^+ \), this reduction in the “diffuse-ness” of the 4s orbital does not always outweigh the “natural” orbital energy ordering (3d lower than 4s).

For \(M^{2+} \), \(M^{3+} \), \(M^{4+} \), etc., the result is that occupation of only the 3d orbitals results in a lower energy electronic configuration…we say “3d is lower than 4s”.
ORBITAL ENERGIES OF THE NON-HYDROGEN ATOMS

\[n = \infty \]

\[n = 4 \]
\[n = 3 \]
\[n = 2 \]
\[n = 1 \]

Energy

Hydrogen

\[n = 1 \quad l = 0 \]
1s

Non-hydrogen

4s 3p 3d 3s 2p 2s