Introduction

Leaching of gold by thiosulfate is the primary non-toxic alternative to the traditional cyanidation.

Electrochemical study of leaching of gold in thiosulfate solution

Experimental Results

Low cost
Reasonably simple chemistry
Environmentally friendly
Small consumption

Cyanide

\[\text{Cu}^{2+} + e^- \rightarrow \text{Cu}^{+} \]

Thiourea

\[\text{NH}_2\text{SCH(NH)}_2 \rightarrow \text{NH}_2\text{SO}_3^- + \text{H}_2\text{O} \]

Table 1. Toxicity values for cyanide, thiourea and thiosulfate obtained from MSDS

<table>
<thead>
<tr>
<th>Compound</th>
<th>Toxicity in (ORL-RATLD50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyanide</td>
<td>6.4 mg/Kg</td>
</tr>
<tr>
<td>thiourea</td>
<td>125 mg/Kg</td>
</tr>
<tr>
<td>thiosulfate</td>
<td>> 2500 mg/Kg</td>
</tr>
</tbody>
</table>

Decomposition of thiosulfate

\[\text{Au} + \text{S}_2\text{O}_3^- + \text{H}_2\text{O} \rightarrow \text{Au} + \text{S}_2\text{O}_4^2^- + 2e^- + 2\text{H}^+ \]

Passivation of electrode

\[\text{Au} + \text{S}_2\text{O}_3^- + \text{Cu}^{2+} \rightarrow \text{Au} + \text{Cu}^{+} + \text{S}_2\text{O}_4^2^- + 2e^- \]

Decrease in the rate of gold dissolution

\[\text{SO}_3^2^- + \text{S}_2\text{O}_3^- \rightarrow \text{S}_4\text{O}_6^2^- \]

Organic Additives

Surface Enhanced Raman Spectroscopy

Identification of species present in the passive layer

Conclusions

Adsorption of thiourea (TU) on gold

\[\text{Au} + \text{NH}_2\text{SCH(NH)}_2 \rightarrow \text{Au} + \text{Au}^{2+} + 2e^- + \text{NH}_2\text{SO}_3^- \]

Good organic additives

- *Perpendicular orientation*
- *Complex with gold at the metal surface*
- *Interaction through the sulfur atom*

References

1. S. Y. Baron, J. Mirza, G. Szymanski, J. Lipkowski
 Department of Chemistry University of Guelph, Guelph, ON, N1G 2W1, Canada

Funding

- Barrick Gold Corporation
- ElectroMetallurgy Consortium